मराठी

If X = R Sin θ Cos ϕ, Y = R Sin θ Sin ϕ and Z = R Cos θ, Then - Mathematics

Advertisements
Advertisements

प्रश्न

If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then 

पर्याय

  • \[x^2 + y^2 + z^2 = r^2\]

  • \[x^2 + y^2 - z^2 = r^2\]

  • \[x^2 - y^2 + z^2 = r^2\]

  • \[z^2 + y^2 - x^2 = r^2\] 

MCQ

उत्तर

Given: 

`x= r sin θ  cos Φ,` 

`y=r  sinθ  sinΦ `

`z= r cos θ` 

Squaring and adding these equations, we get

`x^2+y^2+z^2=(r sinθ cosΦ )^2+(r sin θ sinΦ )^2+(r cos θ)^2` 

`= x^2+y^2+z^2=r^2 sin^2θ cos^2Φ+r^2 sin^2θsin^2Φ+r^2 cos^2θ ` 

`=x^2+y^2+z^2=(r^2 sin^2θ cos^2Φ+r^2 sin^2 sin^2Φ)+r^2 cos^2Φ`

`=x^2+y^2+z^2=r^2sin^2θ(cos^2Φ+sin^2Φ)+r^2 cos^2Φ`

`=x^2+y^2+z^2=r^2 sin^2θ(1)+r^2 cos^2θ`

`=x^2+y^2+z^2=r^2 sin^2θ+r^2 cos^2θ`

`=x^2+y^2+z^2=r^2(sin^2θ+cos^2θ)`

`=x^2+y^2+z^2=r^2(1)`

`=x^2+y^2+z^2=r^2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.4 | Q 19 | पृष्ठ ५७

संबंधित प्रश्‍न

Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`


Prove the following trigonometric identities.

`sin theta/(1 - cos theta) =  cosec theta + cot theta`


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`


Prove the following identities:

`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`


Prove that:

`cot^2A/(cosecA - 1) - 1 = cosecA`


` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


Define an identity.


The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is 


Prove the following identity :

`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


Evaluate:

sin2 34° + sin56° + 2 tan 18° tan 72° – cot30°


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`


Prove the following identities.

`costheta/(1 + sintheta)` = sec θ – tan θ


If tan θ + cot θ = 2, then tan2θ + cot2θ = ?


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


Prove that (sec θ + tan θ) (1 – sin θ) = cos θ


Factorize: sin3θ + cos3θ

Hence, prove the following identity:

`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×