Advertisements
Advertisements
प्रश्न
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
पर्याय
\[x^2 + y^2 + z^2 = r^2\]
\[x^2 + y^2 - z^2 = r^2\]
\[x^2 - y^2 + z^2 = r^2\]
\[z^2 + y^2 - x^2 = r^2\]
उत्तर
Given:
`x= r sin θ cos Φ,`
`y=r sinθ sinΦ `
`z= r cos θ`
Squaring and adding these equations, we get
`x^2+y^2+z^2=(r sinθ cosΦ )^2+(r sin θ sinΦ )^2+(r cos θ)^2`
`= x^2+y^2+z^2=r^2 sin^2θ cos^2Φ+r^2 sin^2θsin^2Φ+r^2 cos^2θ `
`=x^2+y^2+z^2=(r^2 sin^2θ cos^2Φ+r^2 sin^2 sin^2Φ)+r^2 cos^2Φ`
`=x^2+y^2+z^2=r^2sin^2θ(cos^2Φ+sin^2Φ)+r^2 cos^2Φ`
`=x^2+y^2+z^2=r^2 sin^2θ(1)+r^2 cos^2θ`
`=x^2+y^2+z^2=r^2 sin^2θ+r^2 cos^2θ`
`=x^2+y^2+z^2=r^2(sin^2θ+cos^2θ)`
`=x^2+y^2+z^2=r^2(1)`
`=x^2+y^2+z^2=r^2`
APPEARS IN
संबंधित प्रश्न
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Define an identity.
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`