Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
उत्तर
L.H.S. = `(sintheta - 2sin^3theta)/(2cos^3theta - costheta)`
= `(sintheta(1 - 2sin^2theta))/(costheta(2cos^2theta - 1))`
= `(sintheta(1 - 2sin^2theta))/(costheta[2(1 - sin^2theta) - 1])`
= `(sintheta(1 - 2sin^2theta))/(costheta(2 - 2sin^2theta - 1))`
= `(sintheta(1 - 2sin^2theta))/(costheta(1 - 2sin^2theta))`
= `sintheta/costheta`
= tan θ = R.H.S.
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
tan θ cosec2 θ – tan θ is equal to
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Prove that sec2θ − cos2θ = tan2θ + sin2θ
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0