Advertisements
Advertisements
प्रश्न
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
उत्तर
= `1/("cosecA" - cot"A") - 1/sin"A"`
= `("cosec"^2"A" - cot^2"A")/("cosecA" - cot"A") - "cosecA"`
= `(("cosecA" - cot"A")("cosecA" + cot"A"))/("cosecA" - cot"A") - "cosecA"`
cosecA + cotA − cosecA
= cotA
R.H.S. = `1/sin"A" - 1/("cosecA" + cot"A")`
= `"cosecA" - (("cosec"^2"A" - cot"A")("cosecA" + cot"A"))/("cosecA" + cot"A")`
= cosecA − cosecA + cosecA
= cotA
= L.H.S.
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.