Advertisements
Advertisements
प्रश्न
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
उत्तर
`(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
`= ( cos 38 ° sec (90°-52°))/( cot (90° -18° ) cot (90° -35° ) tan 60° tan 72° tan 55°)`
=` (cos 38° sec 38°)/( cot 72° cot 55° tan 60° tan 72° tan 55°)`
=`(cos 38° xx1/(cos 38°))/(1/(tan 72°) xx1/( tan 55°) xx sqrt(3 ) xx tan 72° xx tan 55°)`
=`1/sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
If cos θ = `24/25`, then sin θ = ?
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1