Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
उत्तर
LHS = `(sec^2θ - sin^2θ)/tan^2θ`
= `(1/cos^2θ - sin^2θ)/(sin^2θ/cos^2θ)`
= `(1 - sin^2θcos^2θ)/((cos^2θ)/(sin^2θ/cos^2θ))`
= `(1 - sin^2θcos^2θ)/sin^2θ`
= `1/sin^2θ - (sin^2θcos^2θ)/(sin^2θ)`
= `cosec^2θ - cos^2θ`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`