मराठी

Prove the Following Identity : Cos 3 θ + Sin 3 θ Cos θ + Sin θ + Cos 3 θ − Sin 3 θ Cos θ − Sin θ = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following identity :

`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`

बेरीज

उत्तर

LHS = `(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ)`

 = `((cos^3θ + sin^3θ)(cosθ - sinθ) + (cos^3θ - sin^3θ)(cosθ + sinθ))/((cosθ + sinθ)(cosθ - sinθ))`

= `(cos^4θ - cos^3θsinθ + sin^3θcosθ - sin^4θ + cos^4θ + cos^3θsinθ - sin^3θcosθ - sin^4θ)/(cos^2θ - sin^2θ)`

= `(2cos^4θ - 2sin^4θ)/(cos^2θ - sin^2θ) = (2(cos^4θ - sin^4θ))/(cos^2θ - sin^2θ)`

= `(2(cos^2θ + sin^2θ)(cos^2θ - sin^2θ))/((cos^2θ - sin^2θ))` = 2(`cos^2θ + sin^2θ`)

= 2       `(∵(cos^2θ + sin^2θ) = 1)`

 OR

LHS = `(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ)`

 = `((cosθ + sinθ)(cos^2θ + sin^2θ - cosθ sinθ))/(cosθ + sinθ) + ((cosθ - sinθ)(cos^2θ + sin^2θ + cosθsinθ))/((cosθ - sinθ))`       (∵ `a^3 ± b^3 = (a ± b)(a^2 + b^2 ± ab`))

= `(cos^2θ + sin^2θ - cosθsinθ) + (cos^2θ + sin^2θ + cosθsinθ)`

= `1 - cosθsinθ + 1 + cosθsinθ`    (∵ `cos^2θ + sin^2θ = 1`)

= 2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Trigonometric Identities - Exercise 21.1

APPEARS IN

फ्रँक Mathematics - Part 2 [English] Class 10 ICSE
पाठ 21 Trigonometric Identities
Exercise 21.1 | Q 6.11
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×