Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
उत्तर
LHS = `(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ)`
= `((cos^3θ + sin^3θ)(cosθ - sinθ) + (cos^3θ - sin^3θ)(cosθ + sinθ))/((cosθ + sinθ)(cosθ - sinθ))`
= `(cos^4θ - cos^3θsinθ + sin^3θcosθ - sin^4θ + cos^4θ + cos^3θsinθ - sin^3θcosθ - sin^4θ)/(cos^2θ - sin^2θ)`
= `(2cos^4θ - 2sin^4θ)/(cos^2θ - sin^2θ) = (2(cos^4θ - sin^4θ))/(cos^2θ - sin^2θ)`
= `(2(cos^2θ + sin^2θ)(cos^2θ - sin^2θ))/((cos^2θ - sin^2θ))` = 2(`cos^2θ + sin^2θ`)
= 2 `(∵(cos^2θ + sin^2θ) = 1)`
OR
LHS = `(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ)`
= `((cosθ + sinθ)(cos^2θ + sin^2θ - cosθ sinθ))/(cosθ + sinθ) + ((cosθ - sinθ)(cos^2θ + sin^2θ + cosθsinθ))/((cosθ - sinθ))` (∵ `a^3 ± b^3 = (a ± b)(a^2 + b^2 ± ab`))
= `(cos^2θ + sin^2θ - cosθsinθ) + (cos^2θ + sin^2θ + cosθsinθ)`
= `1 - cosθsinθ + 1 + cosθsinθ` (∵ `cos^2θ + sin^2θ = 1`)
= 2
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
Given that sin θ = `a/b`, then cos θ is equal to ______.