Advertisements
Advertisements
प्रश्न
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
पर्याय
2 cos \[\theta\]
0
2 sin \[\theta\]
1
उत्तर
We know that,
\[\sin\left( 90 - \theta \right) = \cos\theta\]
So,
\[\sin\left( 45°+ \theta \right) = \cos\left[ 90 - \left( 45° + \theta \right) \right] = \cos\left( 45° - \theta \right)\]
\[\therefore \sin\left( 45°+ \theta \right) - \cos\left( 45°- \theta \right)\]
\[ = \cos\left( 45° - \theta \right) - \cos\left( 45° - \theta \right)\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
Choose the correct alternative:
cos 45° = ?
Choose the correct alternative:
Which is not correct formula?
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`