Advertisements
Advertisements
प्रश्न
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
उत्तर
5 sec θ – 12 cosec θ = 0 ......[Given]
∴ 5 sec θ = 12 cosec θ
∴ `5/costheta = 12/sintheta` ......`[because sectheta = 1/costheta, "cosec" theta = 1/sintheta]`
∴ `sintheta/costheta = 12/5`
∴ tan θ = `12/5`
We know that,
1 + tan2θ = sec2θ
∴ `1 + (12/5)^2` = sec2θ
∴ `1 + 144/25` = sec2θ
∴ `(25 + 144)/25` = sec2θ
∴ sec2θ = `169/25`
∴ secθ = `13/5` ......[Taking square root of both sides]
Now, cos θ = `1/sectheta`
= `1/((13/5))`
∴ cos θ = `5/13`
We know that,
sin2θ + cos2θ = 1
∴ `sin^2theta + (5/13)^2` = 1
∴ `sin^2theta + 25/169` = 1
∴ sec2θ = `1 - 25/169`
∴ sec2θ = `(169 - 25)/169`
∴ sec2θ = `144/169`
∴ sin θ = `12/13` ......[Taking square root of both sides]
∴ sin θ = `12/13`, sec θ = `13/5`.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
(secA + tanA) (1 − sinA) = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Find A if tan 2A = cot (A-24°).
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.