Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
पर्याय
tan2A
sec2A
cosec2A
cot2A
उत्तर
cot2A
`(1 + cot^2"A")/(1 + tan^2"A")`
= `("cosec"^2"A")/("sec"^2"A")`
= `(1/("sin"^2"A"))/(1/("cos"^2"A"))`
= `("cos"^2"A")/("sin"^2"A")`
= cot2A
APPEARS IN
संबंधित प्रश्न
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
If `sin theta = x , " write the value of cot "theta .`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
sin2θ + sin2(90 – θ) = ?
Choose the correct alternative:
Which is not correct formula?
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
sin(45° + θ) – cos(45° – θ) is equal to ______.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`