Advertisements
Advertisements
प्रश्न
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
उत्तर
L.H.S. = `cosA/(1-sinA)`
= `(cosA(1 + sinA))/((1 - sinA)(1 + sinA))`
= `(cosA(1 + sinA))/(1 - sin^2A)`
= `(cosA(1 + sinA))/(cos^2A)`
= `(1 + sinA)/cosA`
= `1/cosA + sinA/cosA`
= sec A + tan A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.