Advertisements
Advertisements
प्रश्न
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
उत्तर
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
L.H.S = [(sin θ + sec θ)2 + (cos θ + cosec θ)2]
= [sin2 θ + sec2 θ + 2 sin θ sec θ + cos2 θ + cosec2 θ + 2 cos θ cosec θ]
= (sin2 θ + cos2 θ) + (sec2 θ + cosec2 θ) + 2 (sin θ sec θ + cos θ cosec θ)
= `1 + sec^2 theta + "cosec"^2 theta + 2[sin theta xx 1/cos theta + cos theta xx 1/sin theta]`
= `1 + sec^2 theta + "cosec"^2 theta + 2 [(sin^2 theta + cos^2 theta)/(sintheta cos theta)]`
= `1 + sec^2 theta + "cosec"^2 theta + 2 xx 1/(sintheta costheta)`
= 1 + sec2 θ + cosec2 θ + 2 sec θ cosec θ
= 1 + (sec θ + cosec θ)2
L.H.S = R.H.S
∴ (sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.