Advertisements
Advertisements
प्रश्न
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
उत्तर
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
⇒ `cos90^circ + sin30^circ . sin45^circ/cos45^circ .cos^2 45^circ`
⇒ `cos90^circ + sin30^circ . sin45^circ . cos45^circ`
⇒ `0 + 1/2 . 1/2 = 1/4`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Choose the correct alternative:
1 + cot2θ = ?
(1 – cos2 A) is equal to ______.