Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
उत्तर
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
`(1 + cosA)/sinA + sinA/(1 + cosA)`
= `((1 + cosA)^2 + sin^2A)/(sinA(1 + cosA))`
= `(1 + 2cosA + cos^2A + sin^2A)/(sinA(1 + cosA))`
= `(2 + 2cosA)/(sinA(1 + cosA))`
= `(2(1 + cosA))/(sinA(1 + cosA)` [`sin^2A + cos^2A = 1`]
= 2 cosec A
APPEARS IN
संबंधित प्रश्न
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
What is the value of (1 − cos2 θ) cosec2 θ?
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.