Advertisements
Advertisements
प्रश्न
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
उत्तर
LHS = `sqrt((1+sin theta)/(1-sin theta))`
=`sqrt(((1+ sin theta))/(1- sin theta) xx ((1+sin theta))/(1+ sin theta))`
=` sqrt(((1+sin theta)^2)/(1-sin^2 theta))`
=`sqrt(((1+ sin theta)^2)/(cos^2 theta))`
=`(1+sin theta)/cos theta`
=`1/cos theta+ (sin theta)/(cos theta)`
= (sec 𝜃 + tan 𝜃)
= RHS
APPEARS IN
संबंधित प्रश्न
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
(i)` (1-cos^2 theta )cosec^2theta = 1`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
If tanθ `= 3/4` then find the value of secθ.
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
If 3 sin θ = 4 cos θ, then sec θ = ?
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.