Advertisements
Advertisements
рдкреНрд░рд╢реНрди
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
рдЙрддреНрддрд░
LHS = `sqrt((1-cos theta)/(1+ cos theta))`
=`sqrt(((1-cos theta))/((1+cos theta)) xx ((1- cos theta))/((1 - cos theta))`
=`sqrt((1-cos theta)^2 / (1-cos^2 theta))`
=`sqrt((1-cos theta)^2)/(sin^2 theta)`
=`(1-cos theta)/sin theta`
=`1/sin theta - cos theta/ sin theta`
=(ЁЭСРЁЭСЬЁЭСаЁЭСТЁЭСР ЁЭЬГ − cot ЁЭЬГ)
= RHS
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Define an identity.
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.