Advertisements
Advertisements
प्रश्न
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
उत्तर
R.H.S `m^2 sin^2 theta`
`= (a cos theta + b sin theta)^2 + (a sin theta - b cos theta)^2`
`= a^2 cos^2 theta + b^2 sin^2 theta + 2 ab sin theta cos theta + a^2 sin^2 theta + b^2 cos^2 theta - 2 ab sin theta cos theta`
`= a^2 cos^2 theta + b^2 cos^2 theta + b^2 sin^2 theta + a^2 sin^2 theta`
`= a^2(sin^2 theta + cos^2 theta) + b^2(sin^2 theta + cos^2 theta)`
`=a^2 + b^2` (∵ `sin^2 theta + cos^2 theta = 1`)
APPEARS IN
संबंधित प्रश्न
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
If tanθ `= 3/4` then find the value of secθ.
If sec θ + tan θ = x, then sec θ =
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Find the value of sin 30° + cos 60°.
If cosθ = `5/13`, then find sinθ.
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
Choose the correct alternative:
cot θ . tan θ = ?
Choose the correct alternative:
cos 45° = ?
If 1 – cos2θ = `1/4`, then θ = ?
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`