मराठी

If a Cos θ + B Sin θ = M and a Sin θ – B Cos θ = N, Prove that A2 + B2 = M2 + N2 - Mathematics

Advertisements
Advertisements

प्रश्न

If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2

उत्तर

R.H.S `m^2 sin^2 theta`

`= (a cos theta + b sin theta)^2 + (a sin theta - b cos theta)^2`

`= a^2 cos^2 theta + b^2 sin^2 theta + 2 ab sin theta cos theta + a^2 sin^2 theta + b^2 cos^2 theta - 2 ab sin theta cos theta`

`= a^2 cos^2 theta + b^2 cos^2 theta + b^2 sin^2 theta + a^2 sin^2 theta`

`= a^2(sin^2 theta + cos^2 theta) + b^2(sin^2 theta + cos^2 theta)`

`=a^2 + b^2`   (∵ `sin^2 theta + cos^2 theta = 1`)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 80 | पृष्ठ ४७

संबंधित प्रश्‍न

If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


Prove the following trigonometric identities.

`sin^2 A + 1/(1 + tan^2 A) = 1`


Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`


Prove the following identities:

`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


If tanθ `= 3/4` then find the value of secθ.


If sec θ + tan θ = x, then sec θ =


Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`


Find the value of sin 30° + cos 60°.


If cosθ = `5/13`, then find sinθ. 


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


Choose the correct alternative:

cot θ . tan θ = ?


Choose the correct alternative:

cos 45° = ?


If 1 – cos2θ = `1/4`, then θ = ?


Prove that

sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A


If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×