Advertisements
Advertisements
प्रश्न
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
उत्तर
R.H.S `m^2 sin^2 theta`
`= (a cos theta + b sin theta)^2 + (a sin theta - b cos theta)^2`
`= a^2 cos^2 theta + b^2 sin^2 theta + 2 ab sin theta cos theta + a^2 sin^2 theta + b^2 cos^2 theta - 2 ab sin theta cos theta`
`= a^2 cos^2 theta + b^2 cos^2 theta + b^2 sin^2 theta + a^2 sin^2 theta`
`= a^2(sin^2 theta + cos^2 theta) + b^2(sin^2 theta + cos^2 theta)`
`=a^2 + b^2` (∵ `sin^2 theta + cos^2 theta = 1`)
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
If `sec theta = x ,"write the value of tan" theta`.
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
cos4 A − sin4 A is equal to ______.
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that:
tan (55° + x) = cot (35° – x)
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.