Advertisements
Advertisements
प्रश्न
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
उत्तर
LHS = (sin2θ)2 + (cos2 θ)2 + 2 sin2θ cos2θ - 2 sin2θ cos2θ
= ( sin2θ + cos2θ )2 - 2 sin2θ cos2θ
= 1 - 2 sin2θ cos2θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.