हिंदी

If S E C θ + T a N θ = X Then T a N θ = - Mathematics

Advertisements
Advertisements

प्रश्न

If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 

विकल्प

  • \[\frac{x^2 + 1}{x}\]

  • \[\frac{x^2 - 1}{x}\]

  • \[\frac{x^2 + 1}{2x}\]

  • \[\frac{x^2 - 1}{2x}\] 

MCQ

उत्तर

Given: 

`sec θ+tanθ=x` 

We know that,

`sec^2 θ-tan^2 θ=1`

⇒` (sec θ+tan θ)(sec θ-tanθ)=1` 

⇒`x(sec θ-tan θ)=1`

⇒ `secθ-tan θ=1/x` 

Now, 

`secθ+tan θ=x,` 

`sec θ-tan θ=1/x`

Subtracting the second equation from the first equation, we get 

`(secθ+tan θ)-(secθ-tanθ)=x-1/x` 

⇒` secθ+tanθ-secθ+tanθ=(x^2-1)/x`  

⇒ `2 tanθ=(x^2-1)/x` 

⇒ `2 tan θ=(x^2-1)/(2x)` 

⇒ `tan θ=(x^2-1)/(2x)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 2 | पृष्ठ ५६

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`

 


Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


Prove that:

2 sin2 A + cos4 A = 1 + sin4


Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`


If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`


Write the value of cos1° cos 2°........cos180° .


If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 


(sec A + tan A) (1 − sin A) = ______.


Prove the following identity :

`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`


If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`


Without using trigonometric table , evaluate : 

`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`


If sin θ = `1/2`, then find the value of θ. 


Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`


Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`


Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`


Prove that (sec θ + tan θ) (1 – sin θ) = cos θ


Prove the following identity:

(sin2θ – 1)(tan2θ + 1) + 1 = 0


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×