Advertisements
Advertisements
प्रश्न
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
विकल्प
\[\frac{x^2 + 1}{x}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x^2 + 1}{2x}\]
\[\frac{x^2 - 1}{2x}\]
उत्तर
Given:
`sec θ+tanθ=x`
We know that,
`sec^2 θ-tan^2 θ=1`
⇒` (sec θ+tan θ)(sec θ-tanθ)=1`
⇒`x(sec θ-tan θ)=1`
⇒ `secθ-tan θ=1/x`
Now,
`secθ+tan θ=x,`
`sec θ-tan θ=1/x`
Subtracting the second equation from the first equation, we get
`(secθ+tan θ)-(secθ-tanθ)=x-1/x`
⇒` secθ+tanθ-secθ+tanθ=(x^2-1)/x`
⇒ `2 tanθ=(x^2-1)/x`
⇒ `2 tan θ=(x^2-1)/(2x)`
⇒ `tan θ=(x^2-1)/(2x)`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
Write the value of cos1° cos 2°........cos180° .
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
If sin θ = `1/2`, then find the value of θ.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ