Advertisements
Advertisements
प्रश्न
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
उत्तर
L.H.S. = (1 + cot A – cosec A)(1 + tan A + sec A)
= `(1 + cosA/sinA - 1/sinA)(1 + sinA/cosA + 1/cosA)`
= `((sinA + cosA - 1)/sinA)((cosA + sinA + 1)/cosA)`
= `((sinA + cosA - 1)(sinA + cosA + 1))/(sinAcosA)`
= `((sinA + cosA)^2 - (1)^2)/(sinAcosA)`
= `(sin^2A + cos^2A + 2sinAcosA - 1)/(sinAcosA)`
= `(1 + 2sinAcosA - 1)/(sinAcosA)`
= `(2sinAcosA)/(sinAcosA)`
= 2 = R.H.S.
APPEARS IN
संबंधित प्रश्न
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ