рд╣рд┐рдВрджреА

`Sqrt((1-cos Theta)/(1+Cos Theta)) = (Cosec Theta - Cot Theta)` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

`sqrt((1-cos theta)/(1+cos theta)) = (cosec  theta - cot  theta)`

рдЙрддреНрддрд░

LHS = `sqrt((1-cos theta)/(1+ cos theta))`

      =`sqrt(((1-cos theta))/((1+cos theta)) xx ((1- cos theta))/((1 - cos theta))`

      =`sqrt((1-cos theta)^2 / (1-cos^2 theta))`

    =`sqrt((1-cos theta)^2)/(sin^2 theta)`

     =`(1-cos theta)/sin theta`

     =`1/sin theta - cos theta/ sin theta`

     =(ЁЭСРЁЭСЬЁЭСаЁЭСТЁЭСР ЁЭЬГ − cot ЁЭЬГ)
      = RHS

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 8: Trigonometric Identities - Exercises 1

APPEARS IN

рдЖрд░рдПрд╕ рдЕрдЧреНрд░рд╡рд╛рд▓ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 8 Trigonometric Identities
Exercises 1 | Q 21.2

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди

If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`


Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`


Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`


Prove the following trigonometric identity.

`cos^2 A + 1/(1 + cot^2 A) = 1`


Prove the following trigonometric identities.

`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


Prove the following identities:

sec4 A (1 – sin4 A) – 2 tan2 A = 1


Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 


Write the value of tan1° tan 2°   ........ tan 89° .


If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.


cos4 A − sin4 A is equal to ______.


Prove the following identity : 

`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`


If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m


Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2. 


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×