Advertisements
Advertisements
प्रश्न
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
उत्तर १
We have,
`=(\sec ^{2}\theta +\tan ^{2}\theta +2\sec \theta \tan\theta -1)/(\sec ^{2}\theta +\tan^{2}\theta +2\sec \theta \tan\theta +1)`
`=\frac{(\sec ^{2}\theta -1)+\tan ^{2}\theta +2\sec \theta \tan\theta }{\sec ^{2}\theta +2\sec \theta \tan \theta +(1+\tan^{2}\theta )`
`=(\tan ^{2}\theta +\tan ^{2}\theta +2\sec \theta \tan\theta )/(\sec ^{2}\theta +2\sec \theta \tan \theta +\sec^{2}\theta )`
`=\frac{2\tan ^{2}\theta +2\tan \theta \sec \theta }{2\sec^{2}\theta +2\sec \theta \tan \theta }`
`=\frac{2\tan \theta (\tan \theta +\sec \theta )}{2\sec \theta (\sec\theta +\tan \theta )}`
`=\frac{\tan \theta }{\sec \theta }=\frac{\sin \theta }{\cos \theta \sec\theta }`
= sinθ = RHS
उत्तर २
Sec θ + tan θ = P
⇒ `1/cos θ + sin θ /cos θ = P`
⇒ `(1 + sin θ)/cos θ = P`
⇒ `(1 + sin θ)^2/cos^2 θ = P^2`, ....(Squaring both sides)
⇒ `(1 + sin^2 θ + 2 sin θ)/cos^2 θ = p^2`
⇒ `(1 + sin^2 θ + 2 sin θ + cos^2 θ)/(1 + sin^2 θ + 2 sin θ - cos^2 θ) = (p^2 + 1)/(p^2 - 1)` ....(Applying componendo and dividendo]
⇒ `(1 + 1 + 2 sin θ)/(sin^2 θ + sin^2 θ + 2 sin θ) = (p^2 + 1)/(p^2 - 1)`
⇒ `(2( 1 + sin θ))/(2 sin θ( 1 + sin θ)) = (p^2 + 1)/(p^2 - 1)`
⇒ `1/sin θ = (p^2 + 1)/(p^2 - 1)`
Taking reciprocals, we get,
⇒ sin θ = `(p^2 - 1)/(p^2 + 1)`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`