Advertisements
Advertisements
प्रश्न
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
उत्तर
LHS = 2(sin6θ + cos6θ) - 3(sin4θ + cos4θ) + 1
Simplifying the expression 2(sin6θ + cos6θ) - 3(sin4θ + cos4) we have,
2(sin6θ + cos6θ) - 3(sin4θ + cos4θ)
= 2sin6θ + 2cos6θ - 3sin4θ - 3cos4θ
= (2sin6θ - 3sin4θ) + (2cos6θ - 3cos4θ)
= sin4θ(2sin2θ - 3) + cos4θ(2cos2θ - 3)
= sin4θ{2( 1 - cos2θ) - 3} + cos4θ{ 2( 1 - sin2θ) - 3}
= sin4θ( 2 - 2cos2θ - 3) + cos4θ( 2 - 2sin2θ - 3)
= sin4θ( -1 - 2cos2θ) + cos4θ( - 1 - 2sin2θ)
= - sin4θ - 2sin4θcos2θ - cos4θ - 2cos4θsin2θ
= - sin4θ - cos4θ - 2cos4θsin2θ - 2sin4θcos2θ
= - sin4θ - cos4θ - 2cos2θsin2θ( cos2θ + sin2θ )
= - sin4θ - cos4θ - 2cos2θsin2θ(1)
= - sin4θ - cos4θ - 2cos2θsin2θ
= - (sin4θ + cos4θ + 2cos2θsin2θ)
= - {(sin2θ)2 + (cos2θ)2 + 2sin2θcos2θ }
= - (sin2θ + cos2θ)2
= - (1)2
= - 1
2(sin6θ + cos6θ) - 3(sin4θ + cos4θ) + 1 = −1 + 1 = 0 = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
Find the value of sin 30° + cos 60°.
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.