हिंदी

Prove that : 2(Sin6 θ + Cos6 θ) − 3 (Sin4 θ + Cos4 θ) + 1 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0

योग

उत्तर

LHS = 2(sin6θ + cos6θ) - 3(sin4θ + cos4θ) + 1

Simplifying the expression 2(sin6θ + cos6θ) - 3(sin4θ + cos4) we have,
2(sin6θ + cos6θ) - 3(sin4θ + cos4θ)

= 2sin6θ + 2cos6θ - 3sin4θ - 3cos4θ

= (2sin6θ - 3sin4θ) + (2cos6θ - 3cos4θ)

= sin4θ(2sin2θ - 3) + cos4θ(2cos2θ - 3)

= sin4θ{2( 1 - cos2θ) - 3} + cos4θ{ 2( 1 - sin2θ) - 3} 

= sin4θ( 2 - 2cos2θ - 3) + cos4θ( 2 - 2sin2θ - 3)

= sin4θ( -1 - 2cos2θ) + cos4θ( - 1 - 2sin2θ)

= - sin4θ - 2sin4θcos2θ - cos4θ - 2cos4θsin2θ

= - sin4θ - cos4θ - 2cos4θsin2θ - 2sin4θcos2θ

= - sin4θ - cos4θ - 2cos2θsin2θ( cos2θ + sin2θ )

= - sin4θ - cos4θ - 2cos2θsin2θ(1)

= - sin4θ - cos4θ - 2cos2θsin2θ

= - (sin4θ + cos4θ + 2cos2θsin2θ)

= - {(sin2θ)2 + (cos2θ)2 + 2sin2θcos2θ }

= - (sin2θ + cos2θ)2

= - (1)2
= - 1
2(sin6θ + cos6θ) - 3(sin4θ + cos4θ) + 1 = 1 + 1 = 0 = RHS

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 30/4/3
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.