Advertisements
Advertisements
प्रश्न
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
उत्तर
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
⇒ `(sin(90^circ - 41^circ)/sin41^circ)^2 + (cos(90^circ - 49^circ)/sin49^circ)^2`
⇒ `(cos41^circ/sin41^circ)^2 + (sin49^circ/sin49^circ)^2`
⇒ 1 + 1 = 2
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.