हिंदी

` (Sin Theta - Cos Theta) / ( Sin Theta + Cos Theta ) + ( Sin Theta + Cos Theta ) / ( Sin Theta - Cos Theta ) = 2/ ((2 Sin^2 Theta -1))` - Mathematics

Advertisements
Advertisements

प्रश्न

` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`

उत्तर

LHS = `(sin theta - cos theta )/ (sin theta + cos theta) +( sin theta + cos theta )/( sin theta - cos theta )`

       =` ((sin theta - cos theta )^2 + (( sin theta + cos theta )^2))/((sin theta + cos theta )( sin theta - cos theta ))`

      =` (sin^2 theta + cos ^2 theta -2 sin theta  cos theta + sin^2 theta + cos^2 theta + 2 sin theta  cos theta)/( sin^ 2theta - cos^ 2theta)`

     =` (1+1)/(sin^2 theta - ( 1-sin ^2 theta))       ( ∵ sin^2 theta + cos^2 theta =1)`

    =`2/(sin^2 theta - 1 + sin^2 theta)`

    =` 2/ (sin^2 theta -1)`

    = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 1

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 1 | Q 24.1

संबंधित प्रश्न

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`


Prove the following trigonometric identities.

`tan theta + 1/tan theta = sec theta cosec theta`


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following trigonometric identities.

(1 + cot A − cosec A) (1 + tan A + sec A) = 2


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`


If tanθ `= 3/4` then find the value of secθ.


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


Find the value of ( sin2 33° + sin2 57°).


If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.


If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×