Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
उत्तर
We have to prove (1 + cot A − cosec A) (1 + tan A + sec A) = 2
We know that, `sin^2 A + cos^2 A = 1`
So.
`(1 + cot A − cosec A) (1 + tan A + sec A) = (1 + cosA/sin A - 1/ sinA) (1 + sin A/cos A + 1/cos A)`
`= ((sin A + cos A - 1)/sin A)((cos A + sin A + 1)/cos A)`
`= ((sin A + cos A -1)(sin A + cos A + 1))/(sin A cos A)`
`= ({(sin A + cos A) - 1}{(sin A + cos A) + 1})/(sin A cos A)`
`= ((sin A + cos A)^2 -1)/(sin A cos A)`
`= (sin^2 A + 2 sin A cos A + cos^2 A - 1)/(sin A cos A)`
`= ((sin^2 A + cos^2 A) + 2 sin A cos A - 1)/(sin A cos A)`
`= (1 + 2 sin A cos A -1)/(sin A cos A)`
`= (2 sin A cos A)/(sin A cos A)`
= 2
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
What is the value of (1 − cos2 θ) cosec2 θ?
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
Choose the correct alternative:
cot θ . tan θ = ?
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?