Advertisements
Advertisements
Question
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Solution
We have to prove (1 + cot A − cosec A) (1 + tan A + sec A) = 2
We know that, `sin^2 A + cos^2 A = 1`
So.
`(1 + cot A − cosec A) (1 + tan A + sec A) = (1 + cosA/sin A - 1/ sinA) (1 + sin A/cos A + 1/cos A)`
`= ((sin A + cos A - 1)/sin A)((cos A + sin A + 1)/cos A)`
`= ((sin A + cos A -1)(sin A + cos A + 1))/(sin A cos A)`
`= ({(sin A + cos A) - 1}{(sin A + cos A) + 1})/(sin A cos A)`
`= ((sin A + cos A)^2 -1)/(sin A cos A)`
`= (sin^2 A + 2 sin A cos A + cos^2 A - 1)/(sin A cos A)`
`= ((sin^2 A + cos^2 A) + 2 sin A cos A - 1)/(sin A cos A)`
`= (1 + 2 sin A cos A -1)/(sin A cos A)`
`= (2 sin A cos A)/(sin A cos A)`
= 2
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
If sec θ + tan θ = x, then sec θ =
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Choose the correct alternative:
cot θ . tan θ = ?
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.