English

Prove the Following Trigonometric Identities. (1 + Cot A − Cosec A) (1 + Tan A + Sec A) = 2 - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

(1 + cot A − cosec A) (1 + tan A + sec A) = 2

Solution

We have to prove  (1 + cot A − cosec A) (1 + tan A + sec A) = 2

We know that, `sin^2 A + cos^2 A = 1`

So.

`(1 + cot A − cosec A) (1 + tan A + sec A) = (1 + cosA/sin A - 1/ sinA) (1 + sin A/cos A + 1/cos A)` 

`= ((sin A + cos A - 1)/sin A)((cos A + sin A + 1)/cos A)`

`= ((sin A + cos A -1)(sin A + cos A  + 1))/(sin A cos A)`

`= ({(sin A + cos A) - 1}{(sin A + cos A) + 1})/(sin A cos A)`

`= ((sin A + cos A)^2 -1)/(sin A cos A)`

`= (sin^2 A + 2 sin A cos A + cos^2 A - 1)/(sin A cos A)`

`= ((sin^2 A + cos^2 A) + 2 sin A cos A - 1)/(sin A cos A)`

`= (1 + 2 sin A cos A  -1)/(sin A cos A)`

`= (2 sin A cos A)/(sin A cos A)`

= 2

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 60 | Page 46

RELATED QUESTIONS

Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`


Prove the following trigonometric identities.

`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


Prove the following identities:

`cosA/(1 - sinA) = sec A + tan A`


Prove that:

`cot^2A/(cosecA - 1) - 1 = cosecA`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`


If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`


Write the value of sin A cos (90° − A) + cos A sin (90° − A).


If sec θ + tan θ = x, then sec θ =


If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`


Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


Choose the correct alternative:

cot θ . tan θ = ?


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


The value of tan A + sin A = M and tan A - sin A = N.

The value of `("M"^2 - "N"^2) /("MN")^0.5`


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×