Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Solution
In the given question, we need to prove `1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Here, we will first solve the L.H.S.
Now using `sec theta = 1/cos theta` and `tan theta = sin theta/cos theta`, we get
`1/(sec A + tan A) - 1/cos A = 1/(1/cos A + sin A/cos A) - (1/cos A)`
`= 1/(((1 + sin A)/cos A)) - (1/cos A)`
`= (cos A/(1 + sin A)) - (1/cos A)`
`= (cos^2 A - (1 + sin A))/((1 + sin A)(cos A))`
On further solving, we get
`(cos^2 A -(1 + sin A))/((1 + sin A)(cos A)) = (cos^2 A - 1 - sin A)/((1 + sin A)(cos A))`
`= (-sin^2 A - sin A)/((1 + sin A)(cos A))` (Using `sin^2 theta = 1 - cos^2 theta)`
`= (-sin A(sin A + 1))/((1 + sin A)(cos A))`
`= (-sin A)/cos A`
= -tan A
Similarly we solve the R.H.S.
`((1 - sin A) - cos^2 A)/((cos A)(1 - sin^2 A)) = (1 - sin A - cos^2 A)/((cos A)(1 - sin A))`
`= (sin^2 A - sin A)/((cos A)(1 - sin A))` (Using `sin^2 theta = 1- cos^2 theta`)
`= (-sin A(1 - sin A))/((cos A)(1 - sin A))`
`= (-sin A)/cos A`
= - tan A
So, L.H.S = R.H.S
Hence proved.
RELATED QUESTIONS
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Choose the correct alternative:
1 + tan2 θ = ?
Find the value of ( sin2 33° + sin2 57°).
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Choose the correct alternative:
sec 60° = ?
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
tan θ × `sqrt(1 - sin^2 θ)` is equal to:
If tan θ = `x/y`, then cos θ is equal to ______.