English

Prove the Following Trigonometric Identities. (1 - Cos A)/(1 + Cos A) = (Cot a - Cosec A)^2 - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`

Sum

Solution 1

We need to prove `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`

Now, rationalising the L.H.S, we get

`(1 - cos A)/(1 + cos A) = ((1 - cos A)/(1 +  cos A)) ((1 - cos A)/(1 - cos A))`

`= (1 - cos A)^2/(1 - cos^2 A)`      (using `a^2 - b^2 = (a + b)(a - b))`

` = (1 + cos^2 A - 2 cos A)/sin^2 A`    (Using `sin^2 theta = 1 - cos^2 theta`)

`= 1/sin^2 A + cos^2 A/sin^2 A - (2 cos A)/sin^2 A`

Using `cosec theta = 1/sin theta` and `cot theta = cos theta/sin theta` we get

`1/sin^2 A + cos^2 A/sin^2 A - (2 cos A)/sin^2 A = cosec^2 A + cot^2 A - 2 cot A cosec A`

` (cot A - cosec A)^2`    (Using `(a + b)^2 = a^2 + b^2 + 2ab`)

Hence proved.

shaalaa.com

Solution 2

LHS = `(1 - cos θ)/(1 + cos θ)`

= `(1 - cos θ)/(1 + cos θ) xx (1 - cos θ)/(1 - cos θ)`

= `(1 - cos θ)^2/(1 - cos^2 θ)`

= `(1 - cos θ)^2/(sin^2 θ)`

= `[(1 - cosθ)/(sin θ)]^2`

= `[ 1/sinθ  - cosθ/sin θ ]^2`

= ( cosec θ - cot θ )2

= [ - (cot θ - cosec θ)]2

= (cot θ - cosec θ)2

= RHS

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 61.1
RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 40 | Page 45

RELATED QUESTIONS

 Evaluate sin25° cos65° + cos25° sin65°


Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`


As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.


Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove the following trigonometric identities.

`(1 + cos A)/sin A = sin A/(1 - cos A)`


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following identities:

`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`


`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`


If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.


9 sec2 A − 9 tan2 A is equal to


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


Prove the following identity :

sinθcotθ + sinθcosecθ = 1 + cosθ  


Prove the following identity :

`cosA/(1 + sinA) = secA - tanA`


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


Prove the following identity : 

`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`


Prove the following identity : 

`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`


Evaluate:

sin2 34° + sin56° + 2 tan 18° tan 72° – cot30°


Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.


Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`


Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to


Choose the correct alternative:

`(1 + cot^2"A")/(1 + tan^2"A")` = ?


Prove that

sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A


If sin A = `1/2`, then the value of sec A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×