Advertisements
Advertisements
Question
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Solution 1
We need to prove `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Now, rationalising the L.H.S, we get
`(1 - cos A)/(1 + cos A) = ((1 - cos A)/(1 + cos A)) ((1 - cos A)/(1 - cos A))`
`= (1 - cos A)^2/(1 - cos^2 A)` (using `a^2 - b^2 = (a + b)(a - b))`
` = (1 + cos^2 A - 2 cos A)/sin^2 A` (Using `sin^2 theta = 1 - cos^2 theta`)
`= 1/sin^2 A + cos^2 A/sin^2 A - (2 cos A)/sin^2 A`
Using `cosec theta = 1/sin theta` and `cot theta = cos theta/sin theta` we get
`1/sin^2 A + cos^2 A/sin^2 A - (2 cos A)/sin^2 A = cosec^2 A + cot^2 A - 2 cot A cosec A`
` (cot A - cosec A)^2` (Using `(a + b)^2 = a^2 + b^2 + 2ab`)
Hence proved.
Solution 2
LHS = `(1 - cos θ)/(1 + cos θ)`
= `(1 - cos θ)/(1 + cos θ) xx (1 - cos θ)/(1 - cos θ)`
= `(1 - cos θ)^2/(1 - cos^2 θ)`
= `(1 - cos θ)^2/(sin^2 θ)`
= `[(1 - cosθ)/(sin θ)]^2`
= `[ 1/sinθ - cosθ/sin θ ]^2`
= ( cosec θ - cot θ )2
= [ - (cot θ - cosec θ)]2
= (cot θ - cosec θ)2
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Evaluate sin25° cos65° + cos25° sin65°
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
9 sec2 A − 9 tan2 A is equal to
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
If sin A = `1/2`, then the value of sec A is ______.