Advertisements
Advertisements
Question
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Solution
LHS = `sin theta/((cot theta + cosec theta))- sin theta/(( cot theta - cosec theta))`
=` sin theta { ((cot theta - cosec theta )-( cot theta + cosec theta ))/(( cot theta + cosec theta ) ( cot theta - cosec theta ))}`
=` sin theta { (-2 cosec theta)/(-1)} (∵ cosec^2 theta - cot^2 theta =1)`
=` sin theta . 2 cosec theta`
=`sin theta xx2xx1/ sin theta`
= 2
= RHS
APPEARS IN
RELATED QUESTIONS
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
If tanθ `= 3/4` then find the value of secθ.
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
If 3 sin θ = 4 cos θ, then sec θ = ?
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
sin(45° + θ) – cos(45° – θ) is equal to ______.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.