Advertisements
Advertisements
Question
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
Solution
LHS = `(sin theta - cos theta )/ (sin theta + cos theta) +( sin theta + cos theta )/( sin theta - cos theta )`
=` ((sin theta - cos theta )^2 + (( sin theta + cos theta )^2))/((sin theta + cos theta )( sin theta - cos theta ))`
=` (sin^2 theta + cos ^2 theta -2 sin theta cos theta + sin^2 theta + cos^2 theta + 2 sin theta cos theta)/( sin^ 2theta - cos^ 2theta)`
=` (1+1)/(sin^2 theta - ( 1-sin ^2 theta)) ( ∵ sin^2 theta + cos^2 theta =1)`
=`2/(sin^2 theta - 1 + sin^2 theta)`
=` 2/ (sin^2 theta -1)`
= RHS
APPEARS IN
RELATED QUESTIONS
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
`(sec^2 theta-1) cot ^2 theta=1`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
Prove that cot2θ × sec2θ = cot2θ + 1
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?