English

` (Sin Theta - Cos Theta) / ( Sin Theta + Cos Theta ) + ( Sin Theta + Cos Theta ) / ( Sin Theta - Cos Theta ) = 2/ ((2 Sin^2 Theta -1))` - Mathematics

Advertisements
Advertisements

Question

` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`

Solution

LHS = `(sin theta - cos theta )/ (sin theta + cos theta) +( sin theta + cos theta )/( sin theta - cos theta )`

       =` ((sin theta - cos theta )^2 + (( sin theta + cos theta )^2))/((sin theta + cos theta )( sin theta - cos theta ))`

      =` (sin^2 theta + cos ^2 theta -2 sin theta  cos theta + sin^2 theta + cos^2 theta + 2 sin theta  cos theta)/( sin^ 2theta - cos^ 2theta)`

     =` (1+1)/(sin^2 theta - ( 1-sin ^2 theta))       ( ∵ sin^2 theta + cos^2 theta =1)`

    =`2/(sin^2 theta - 1 + sin^2 theta)`

    =` 2/ (sin^2 theta -1)`

    = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 24.1

RELATED QUESTIONS

Prove that `cosA/(1+sinA) + tan A =  secA`


Prove the following trigonometric identities.

`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`


Prove the following identities:

(1 – tan A)2 + (1 + tan A)2 = 2 sec2A


Prove the following identities:

`1/(secA + tanA) = secA - tanA`


If x = a cos θ and y = b cot θ, show that:

`a^2/x^2 - b^2/y^2 = 1` 


`(sec^2 theta-1) cot ^2 theta=1`


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`


`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`


Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 


If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =


Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.


Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


Prove that cot2θ × sec2θ = cot2θ + 1


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×