Advertisements
Advertisements
Question
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Solution
LHS = `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2`
⇒ `(1 + sin^2 θ + cos^2 θ + 2(sin θ - cos θ - sin θ. cos θ))/(1 + sin^2 θ + cos^2 θ + 2(sin θ + cos θ + sin θ. cos θ)`
= `(1 + 1 + 2 (sin θ - cos θ - sin θ. cos θ))/( 1 + 1 + 2((sin θ + cos θ + sin θ. cos θ)`
= `(2 (1 + sin θ - cos θ - sin θ. cos θ))/(2( 1 + (sin θ + cos θ + sin θ. cos θ))`
= `( 1 + sin θ - cos θ( 1 + sin θ))/(1 + sin θ + cos θ( 1 + sin θ))`
= `((1 + sin θ)(1 - cos θ))/((1 + sin θ)( 1 + cos θ))`
= `(1 - cos θ)/( 1 + cos θ)`
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If sin A = `1/2`, then the value of sec A is ______.