English

Prove the Following Trigonometric Identities. (1 + Cot a + Tan A)(Sin a - Cos A) = Sec A/(Cosec^2 A) - (Cosec A)/Sec^2 a = Sin a Tan a - Cos a Cot a - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`

Solution

We have prove that

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`

We know that `sin^2 A + cos^2 A = 1`

So,

(2 + cot A + tan A)(sin A - cos A)

`= (1 + cos A/sin A + sin A/cos A)(sin A - cos A)`

`= ((sin A cos A + cos^2 A + sin^2 A)/(sin A cos A)) (sin A  - cos A)`

`= ((sin A cos A + 1)/(sin A cos A))(sin A - cos A)`

`= ((sin A - cos A)(sin A cos A + 1))/(sin A cos A)`

`= (sin^2 A cos A + sin A - cos^2 A sin A  - cos A)/(sin A cos A)`

`= ((sin^2 A cos A - cos A) + (sin A - cos^2 A sin A))/(sin A cos A)`

`= (cos A (sin^2 A - 1)+ sin A (1 - sin^2 A))/(sin A cos A)`

`= (cos A (-cos^2 A) + sin A (sin^2 A))/(sin A cos A)`

`= (-cos^3 A + sin^3 A)/(sin A cos A)`

`= (sin^3 A - cos^3 A)/(sin A cos A)`

`= (sin^2  A)/cos A - cos^2 A/sin A`

`= sin A/cos A sin A - cos A/sin A cos A`

`= tan A sin A -  cot A cos A`

= sin A tan A - cos A cot A

Now

`sec A/(cosec^2 A) - (cosec A)/sec^2 A = (1/cos A)/(1/sin^2 A) - (1/sin A)/(1/cos^2 A)`

`= sin^2 A/cos A - cos^2 A/sin A`

`= sin A sin A/cos a - cos A cos A/sin A`

= sin A tan A - cos A cot A

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 68 | Page 46

RELATED QUESTIONS

Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


Prove the following trigonometric identities.

`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`


Prove the following trigonometric identities.

`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`


Prove the following identities:

`((1 + tan^2A)cotA)/(cosec^2A) = tan A`


Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


Prove the following identities:

`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


Write the value of cos1° cos 2°........cos180° .


Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`


Prove the following identity :

`tan^2A - sin^2A = tan^2A.sin^2A`


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×