Advertisements
Advertisements
Question
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Solution
L.H.S. = (sec A − tan A)2 (1 + sin A)
`(1/cos "A" - sin "A"/cos "A")^2 (1 + sin "A")`
= `((1 - sin "A")/cos "A")^2 (1 + sin "A")`
= `((1 - sin "A")(1 - sin "A")(1 + sin "A"))/cos^2"A"`
= `((1 - sin "A")(1 - sin^2 "A"))/cos^2"A"`
= `((1 - sin "A")cos^2"A")/cos^2"A"`
= (1 − sin A) R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.