Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Solution
`(1 - sin^2 A/cos^2 A)/(cos^2 A/sin^2 A -1) = ((cos^2 A - sin^2 A)/cos^2 A)/((cos^2 A - sin^2 A)/sin^2 A`
`= (sin^2 A)/cos^2 A`
`= tan^2 A`
APPEARS IN
RELATED QUESTIONS
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0