Advertisements
Advertisements
Question
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Solution
L.H.S. = `sqrt((1 - sinA)/(1 + sinA))`
= `sqrt((1 - sinA)/(1 + sinA) xx (1 + sinA)/(1 + sinA))`
= `sqrt((1 - sin^2A)/(1 + sinA)^2)`
= `sqrt(cos^2A/(1 + sinA)^2)`
= `cosA/(1 + sinA)` = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`