Advertisements
Advertisements
Question
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
Solution
L.H.S. = `1 - cos^2A/(1 + sinA)`
= `(1 + sinA - cos^2A)/(1 + sinA)`
= `(sinA + sin^2A)/(1 + sinA)`
= `(sinA(1 + sinA))/(1 + sinA)`
= sin A = R.H.S.
APPEARS IN
RELATED QUESTIONS
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`