Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Solution
We have to prove `cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
We know that `sin^2 theta + cos^2 theta = 1`
So,
`cot theta - tan theta = (cos theta)/(sin theta) - (sin theta)/(cos theta)`
`= (cos^2 theta - sin^2 theta)/(sin theta cos theta)`
`= (cos^2 theta - (1 - cos^2 theta))/(sin theta cos theta)`
`= (cos^2 theta - 1 + cos^2 theta)/(sin theta cos theta)`
`= (2 cos^2 theta - 1)/(sin theta cos theta)`
APPEARS IN
RELATED QUESTIONS
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Evaluate sin25° cos65° + cos25° sin65°
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
If sin A = `1/2`, then the value of sec A is ______.