English

Prove the Following Trigonometric Identities. Cot Theta - Tan Theta = (2 Cos^2 Theta - 1)/(Sin Theta Cos Theta) - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`

Solution

 We have to prove  `cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`

We know that `sin^2 theta + cos^2 theta = 1`

So,

`cot theta - tan theta = (cos theta)/(sin theta) - (sin theta)/(cos theta)`

`= (cos^2 theta - sin^2 theta)/(sin theta cos theta)`

`= (cos^2 theta - (1 - cos^2 theta))/(sin theta cos theta)`

`= (cos^2 theta - 1 + cos^2 theta)/(sin theta cos theta)`

`= (2 cos^2 theta - 1)/(sin theta cos theta)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 23.1 | Page 44

RELATED QUESTIONS

Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`


 Evaluate sin25° cos65° + cos25° sin65°


Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove the following identities:

`(1 + sin A)/(1 - sin A) = (cosec  A + 1)/(cosec  A - 1)`


If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`


If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`


If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2


Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.


Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


Prove that sec2θ + cosec2θ = sec2θ × cosec2θ


If sin A = `1/2`, then the value of sec A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×