Advertisements
Advertisements
Question
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Options
7
12
25
None of these
Solution
Given:
`a cos θ+b sinθ=4`
`a sin θ-b cosθ=3`
Squaring and then adding the above two equations, we have
`(a cosθ+b sinθ)^2+(a sinθ-b cosθ)^2=(4)^2+(3)^2`
`=(a^2cos^2θ+b^2 sin^2θ+2a cosθ.b.sinθ)+(a^2 sin^2θ+b^2 cos^2θ-2.a sinθ.b cosθ)=16+9`
`=a^2 cos^2θ+b^2 sin^2θ+ab sinθ cosθ+a^2 sin^2θ+b^2 cos^2θ-2ab sinθ cosθ=25`
`=a^2 cos^2θ+b^2 sin^2θ+a^2 sin^2θ+b^2 cos^2θ=25`
`=(a^2 cos^2θ+a^2sin^2θ)+(b^2 sin^2θ+b^2 cos^2θ)=25`
=`a^2(cos^2θ+sin^2θ)+b^2(sin^2θ+cos^2θ=25)`
`=a^2(1)+b^2(1)=25`
=`a^2+b^2=25``
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
`(1 + cot^2 theta ) sin^2 theta =1`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`