Advertisements
Advertisements
Question
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Solution
LHS = sec A(1 + sin A )( sec A - tan A)
= `1/cos A (1 + sin A) (1/cos A - sin A/cos A)`
= `1/cos A (1 + sin A) ((1 - sin A)/cos A)`
= `(1 - sin^2 A)/(cos^2 A) = (cos^2 A)/(cos^2 A)`
= 1
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
tan θ cosec2 θ – tan θ is equal to
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ