Advertisements
Advertisements
Question
tan θ cosec2 θ – tan θ is equal to
Options
sec θ
cot2 θ
sin θ
cot θ
Solution
cot θ
Explanation;
Hint:
tan θ cosec2 θ – tan θ = tan θ (cosec2 θ – 1)
= `tan theta xx cot^2 theta`
= `1/cot theta xx cot^2 theta`
= cot θ
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.