Advertisements
Advertisements
Question
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Solution
LHS = `sqrt((1/cos theta - 1)/(1/cos theta + 1)) + sqrt((1/cos theta +1)/(1/cos theta - 1))`
`= sqrt(((1 - cos theta)/cos theta)/((1+ cos theta)/cos theta)) + sqrt(((1 + cos theta)/cos theta)/((1 - cos theta)/cos theta)`
`= sqrt((1 - cos theta)/(1 + cos theta)) +sqrt((1 - cos theta)/(1 - cos theta))`
`= sqrt((1 - cos theta)/(1 + cos theta) xx (1 - cos theta)/(1 - cos theta)) + sqrt((1 + cos theta)/(1 - cos theta) xx (1 + cos theta)/(1 + cos theta))`
`= sqrt((1 - cos theta)^2/(1 - cos^2 theta)) + sqrt((1 + cos theta)^2/(1 - cos^2 theta))`
`=(1 - cos theta)/sin theta + (1 + cos theta)/sin theta`
`= (1 - cos theta + 1 + cos theta)/sin theta`
`= 2/sin theta`
= 2 cosec
APPEARS IN
RELATED QUESTIONS
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`(sec^2 theta-1) cot ^2 theta=1`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.