Advertisements
Advertisements
Question
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Solution
LHS = `(1 + cotA + tanA)(sinA - cosA)`
= `(1 + cosA/sinA + sinA/cosA)(sinA - cosA)`
= `((sinAcosA + cos^2A + sin^2A)/(sinAcosA))(sinA - cosA)`
= `((sin^3A - cos^3A))/(sinAcosA)` (∵(`sin^3A - cos^3A) = (sinA - cosA)(sinA cosA + cos^2A + sin^2A`))
= `sin^3A/(sinAcosA) - cos^3A/(sinAcosA)`
= `sin^2A/cosA - cos^2A/sinA = 1/cosA xx sin^2A - 1/sinA xx cos^2A`
= `secAsin^2A - cosecAcos^2A`
= `secA/(cosec^2A) - (cosecA)/sec^2A`
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`