English

Prove the Following Identity : ( 1 + Cot a + Tan a ) ( Sin a − Cos a ) = Sec a Cos E C 2 a − Cos E C a Sec 2 a - Mathematics

Advertisements
Advertisements

Question

Prove the following identity : 

`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`

Sum

Solution

LHS = `(1 + cotA + tanA)(sinA - cosA)`

 = `(1 + cosA/sinA + sinA/cosA)(sinA - cosA)`

= `((sinAcosA + cos^2A + sin^2A)/(sinAcosA))(sinA - cosA)`

= `((sin^3A - cos^3A))/(sinAcosA)`  (∵(`sin^3A - cos^3A) = (sinA - cosA)(sinA cosA + cos^2A + sin^2A`))

= `sin^3A/(sinAcosA) - cos^3A/(sinAcosA)`

= `sin^2A/cosA - cos^2A/sinA = 1/cosA xx sin^2A - 1/sinA xx cos^2A`

= `secAsin^2A - cosecAcos^2A`

= `secA/(cosec^2A) - (cosecA)/sec^2A`

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometric Identities - Exercise 21.1

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 21 Trigonometric Identities
Exercise 21.1 | Q 6.05
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×