Advertisements
Advertisements
Question
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
Solution
LHS = `(1- tan^2 theta)/(1+ tan^2 theta)`
=`(1-(sin^2 theta)/(cos^2 theta))/(1+(sin^2 theta)/(cos^2 theta))`
=`(cos^2 theta- sin^2 theta)/(cos^2 theta+ sin ^2 theta)`
=`(cos^2 theta+sin^2 theta)/1`
=`cos^2 theta- sin^2 theta`
= RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
If 1 – cos2θ = `1/4`, then θ = ?
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.