Advertisements
Advertisements
Question
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
Solution
m2 + n2
= (x cos A + y sin A)2 + (x sin A – y cos A)2
= x2 cos2 A + y2 sin2 A + 2xy sin A cos A + x2 sin2 A + y2 cos2 A – 2xy sin A cos A
= x2 (cos2 A + sin2 A) + y2 (cos2 A + sin2 A)
= x2 + y2
Hence, x2 + y2 = m2 + n2
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Prove that:
tan (55° + x) = cot (35° – x)
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?