Advertisements
Advertisements
Question
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
Solution
LHS= `(sectheta- tan theta)/(sec theta + tan theta)`
= `(1/cos theta-sin theta/cos theta)/(1/cos theta+ sin theta/cos theta)`
=`((1-sin theta)/cos theta)/((1+ sin theta)/cos theta)`
=`(1-sin theta)/(1+ sin theta)`
=`((1-sin theta) (1+ sin theta))/( (1+ sin theta )(1+ sin theta)) {"Dividing the numerator and
denominator by"(1 + cos theta)}`
=`((1-sin^2 theta))/((1+ sin theta)^2)`
=`cos^2 theta/(1+ sin theta)^2`
= RHS
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
If 2sin2β − cos2β = 2, then β is ______.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.