Advertisements
Advertisements
Question
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Solution
L.H.S
`cos A/(1 + sin A) + (1 + sin A)/cos A `
= `(cos^2A+(1+sinA)^2)/((1+sinA)(cosA))`
= `(cos^2A + 1+sin^2A + 2sinA)/((1+sinA)(cosA))`
= `(sin^2+cos^2A+1+2sinA)/((1+sinA)(cosA))`
= `(1+1+2sinA)/((1+sinA)(cosA))`
= `(2+2sinA)/((1+sinA)(cosA))`
= `(2(1+sinA))/((1+sinA)(cosA))`
= `2/(cosA)`
= 2 secA
= R.H.S
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
From the figure find the value of sinθ.
Simplify : 2 sin30 + 3 tan45.
Define an identity.
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Find A if tan 2A = cot (A-24°).
Find the value of ( sin2 33° + sin2 57°).
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.