English

If 5 tan β = 4, then ββββ5 sinβ-2cosβ5sinβ+2cosβ = ______. - Mathematics

Advertisements
Advertisements

Question

If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.

Options

  • `1/3`

  • `2/5`

  • `3/5`

  • 6

MCQ
Fill in the Blanks

Solution

If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = `underline(bb(1/3)`.

Explanation:

Given, 5 tan β = 4

tan β = `4/5`

Now, `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)`

Dividing numerator and denominator by cos β

= `(5  sin β/cos β - 2  cos β/cos β)/(5  sin β/cos β + 2  cos β/cos β)`

= `(5 tan β - 2)/(5 tan β + 2)`

Putting tan θ = `4/5`

= `(5 xx 4/5 - 2)/(5 xx 4/5 + 2)`

= `(4 - 2)/(4 + 2)`

= `2/6`

= `1/3`

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Standard Sample

RELATED QUESTIONS

 

If `sec alpha=2/sqrt3`  , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.

 

If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


Prove the following identities:

`((1 + tan^2A)cotA)/(cosec^2A) = tan A`


Prove the following identities:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.


`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


Write the value of tan10° tan 20° tan 70° tan 80° .


If `sec theta + tan theta = x,"  find the value of " sec theta`


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Prove the following identity : 

`cosecA + cotA = 1/(cosecA - cotA)`


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2


Without using trigonometric identity , show that :

`cos^2 25^circ + cos^2 65^circ = 1`


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.


Statement 1: sin2θ + cos2θ = 1

Statement 2: cosec2θ + cot2θ = 1

Which of the following is valid?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×