Advertisements
Advertisements
Question
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.
Options
`1/3`
`2/5`
`3/5`
6
Solution
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = `underline(bb(1/3)`.
Explanation:
Given, 5 tan β = 4
tan β = `4/5`
Now, `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)`
Dividing numerator and denominator by cos β
= `(5 sin β/cos β - 2 cos β/cos β)/(5 sin β/cos β + 2 cos β/cos β)`
= `(5 tan β - 2)/(5 tan β + 2)`
Putting tan θ = `4/5`
= `(5 xx 4/5 - 2)/(5 xx 4/5 + 2)`
= `(4 - 2)/(4 + 2)`
= `2/6`
= `1/3`
APPEARS IN
RELATED QUESTIONS
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
Write the value of tan10° tan 20° tan 70° tan 80° .
If `sec theta + tan theta = x," find the value of " sec theta`
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?