Advertisements
Advertisements
Question
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
Solution
LHS = `(1+costheta )(1-cos theta)(1+ cot^2 theta)`
=` (1-cos^2 theta) cosec^2 theta`
=` sin^2 theta xx cosec^2 theta`
=` sin^2 theta xx1/(sin^2 theta)`
=1
= RHS
APPEARS IN
RELATED QUESTIONS
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
(1 + sin A)(1 – sin A) is equal to ______.