Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Solution
In the given question, we need to prove `(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Using the property `sin^2 theta + cot^2 theta = 1` we get
So
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta))`
`= (1 + cos theta - (1 - cos^2 theta))/(sin theta (1 + cos theta)`
`= (cos theta + cos^2 theta)/(sin theta (1 + cos theta))`
Solving further, we get
`(cos theta + cos^2 theta)/(sin(1 + cos theta)) = (cos theta (1 + cos theta))/(sin theta(1 + cos theta))`
`= cos theta/sin theta`
`= cot theta`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Write the value of cosec2 (90° − θ) − tan2 θ.
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.
(1 – cos2 A) is equal to ______.