English

Prove the Following Trigonometric Identities. (1 + Cos Theta - Sin^2 Theta)/(Sin Theta (1 + Cos Theta)) = Cot Theta - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`

Solution

In the given question, we need to prove `(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`

Using the property  `sin^2 theta + cot^2 theta = 1` we get

So

`(1 + cos theta - sin^2 theta)/(sin theta (1 +  cos theta))`

`= (1 + cos theta - (1 - cos^2 theta))/(sin theta (1 + cos theta)`

`= (cos theta + cos^2 theta)/(sin theta (1 + cos theta))`

Solving further, we get

`(cos theta + cos^2 theta)/(sin(1 + cos theta)) = (cos theta (1 + cos theta))/(sin theta(1 + cos theta))`

`= cos theta/sin theta`

`= cot theta`

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 53 | Page 45

RELATED QUESTIONS

Express the ratios cos A, tan A and sec A in terms of sin A.


Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identity.

`cos^2 A + 1/(1 + cot^2 A) = 1`


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`


If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


Prove that:

`(sin^2θ)/(cosθ) + cosθ = secθ`


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


Write the value of cosec2 (90° − θ) − tan2 θ. 


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.


Choose the correct alternative:

`(1 + cot^2"A")/(1 + tan^2"A")` = ?


Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ


Complete the following activity to prove:

cotθ + tanθ = cosecθ × secθ

Activity: L.H.S. = cotθ + tanθ

= `cosθ/sinθ + square/cosθ`

= `(square + sin^2theta)/(sinθ xx cosθ)`

= `1/(sinθ xx  cosθ)` ....... ∵ `square`

= `1/sinθ xx 1/cosθ`

= `square xx secθ`

∴ L.H.S. = R.H.S.


(1 – cos2 A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×